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Abstract

We discuss the dynamic multiscaling of velocity structure functions in #uid turbulence and
contrast it with the dynamic scaling of correlation functions in critical phenomena. We then
outline our study of the dynamic multiscaling of velocity structure functions in the Gledzer–
Ohkitani–Yamada shell model for #uid turbulence.
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The elucidation of the scaling and universality of thermodynamic functions and corre-
lation functions in the vicinity of a critical point was one of the highlights of statistical
physics in the late 1960s and early 1970s [1]. It was shown, e.g., for an Ising fer-
romagnetic system near the critical point that the static spin correlation function �
assumes the following scaling form:

�(r; t; h) ≈ 1
rd−2+� F(t�r; h=t
) ; (1)

here r is the spatial separation between the spins, d the dimension of space, t ≡
(T−Tc)=Tc; h=H=kBTc, T the temperature, Tc the critical temperature, H the magnetic
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Deld, � the correlation length which diverges at the critical point, �; � and 
 well-known
static critical exponents, kB the Boltzmann constant, and F a scaling function which
is also universal if two scale factors are suitably accounted for [1,2]. A spatial Fourier
transform of Eq. (1) yields the wavevector-space version

�̃(q; t; h) ≈ 1
q2−�

F(t�=q; h=t
) ; (2)

where q̃ is the wavevector with magnitude q. Soon after this dynamic scaling was
also proposed [3,4] for time-dependent correlation functions in the vicinity of a critical
point. In particular, the frequency-dependent version of Eq. (2) was argued to be

�̃(q; !; t; h) ≈ 1
q2−�

G(q−z!; t�=q; h=t
) (3)

here z is the dynamic critical exponent, ! denotes the frequency, and G a scaling
function. Eq. (3) also implies that, near the critical point, the relaxation time � diverges
as � ∼ �z. The systematisation of dynamic critical phenomena and the development of
renormalisation groups that yield the scaling form (3) can be found in several excellent
reviews and texts [1,5].
The power-law behaviours of velocity structure functions in fully developed, homo-

geneous, isotropic #uid turbulence, which is found at large Reynolds numbers Re and
far away from boundaries, have attracted several statistical physicists because of their
similarity to the forms of correlation functions like � near a critical point. SpeciDcally,
if we deDne the order-p, static, longitudinal velocity structure function

Sp(l) ≡ 〈�v(l; t)p〉 ;
�v(l; t) ≡ [̃v(̃r + l̃; t)− ṽ(̃r; t)] · (̃l=l) ; (4)

then for l in the inertial range we have

Sp(l) ∼ l�p : (5)

Here ṽ(̃r) denotes the Eulerian velocity at the spatial point r̃ and by the inertial range
we mean L�l��d, where L is the length scale at which energy is pumped into the
#uid and �d the spatial scale at which dissipative losses become signiDcant; the angular
brackets denote an average over the nonequilibrium statistical steady state that obtains
in the turbulent #uid. The power law of Eq. (5) is reminiscent of the behaviour of
correlation functions in critical phenomena (e.g., Eq. (1)); however, the simple scaling
of such correlation functions must be replaced by multiscaling. For our purposes here
this means that �p is a nonlinear function of p (that can also be shown to be convex);
for a thorough discussion see Refs. [6,7]. The main purpose of our paper is to give
a brief overview of the dynamic multiscaling of structure functions in #uid turbulence
and of our recent work on this problem in the context of the Gledzer–Ohkitani–Yamada
(GOY) shell model for #uid turbulence [8]. Such dynamic multiscaling has been studied
much less than the dynamic scaling of correlation functions in critical phenomena;
notable exceptions are the studies of Refs. [9–14].
Recall Drst the elegant arguments of Kolmogorov (henceforth K41) [15] that lead

to the simple scaling result:

�K41p = p=3 : (6)



This result is based on the following assumptions (for a critical discussion see Ref. [6]):
(1) The turbulence that is generated is homogeneous and isotropic and in a statistically
steady state. (2) Since energy is pumped into the system at lengths ∼ L and dissipation
is signiDcant only for length scales . �d, in the inertial range, L�l��d, all statistical
quantities are independent of both the forcing term and the viscosity; energy cascades
down the inertial range till it is dissipated in the dissipation range. Thus, in the inertial
range Sp(l) can depend only on l and the rate of energy dissipation per unit volume
per unit mass !, which is assumed to be constant since experiments show that it
approaches a positive, constant value at large Re in three dimensions. Dimensional
analysis now demands Sp(l) ∼ (!l)p=3 which leads to Eq. (6). Several experiments and
direct numerical simulations (DNS) indicate that the K41 scaling result (6) does not
hold [6,7,16]; and multiscaling deviations from it are particularly apparent for p¿ 3.
The K41 analysis can be generalised easily to obtain a prediction for the dynamic-

scaling exponent z for #uid turbulence as follows: the characteristic decay time �(l) of
a turbulent eddy at length scale l can be estimated to be �(l) ∼ l=�v(l). Since Eq. (6)
implies �v(l) ∼ l1=3 and the dynamic-scaling ansatz is �(l) ∼ lz, we obtain the K41
estimate for the dynamic-scaling exponent

zK41 = 2
3 ; (7)

a result that seems to go as far back as Refs. [17,18]. This value of zK41 emerges, either
explicitly or implicitly, from Deld-theoretic studies of a randomly forced Navier–Stokes
equation in which the variance of the stochastic force has a power-law dependence on
the length scale or, equivalently, wavevector (∼ k−3 in three dimensions, where k is
the magnitude of the wavevector) [19]; these studies use Eulerian velocities and do
not address the diKerence between the scaling of Eulerian- and Lagrangian-velocity
structure functions that we discuss below.
We can also deDne the dynamic structure function of order-p (henceforth t denotes

time and not the reduced temperature as in Eqs. (1)–(3))

#p(l; t) ≡ 〈[�v(l; 0)�v(l; t)]p=2〉 ; (8)

and extract a characteristic decay time �p(l) for #p(l; t) (as we describe below). The
dynamic-multiscaling exponents zp can be deDned, by analogy with dynamic critical
phenomena, via the ansatz

�p(l) ∼ lzp : (9)

Dynamic multiscaling obtains if zp is a nonlinear function of p; K41 analysis yields
zp = zK41 = 2=3 for all p.
Our discussion of dynamic scaling in #uid turbulence is naive, as stated above, for

reasons that have been recognised by some groups [11–14,20,21]. The crucial point
is that the scaling properties of dynamic structure functions may be quite diKerent
depending on whether we use Eulerian or Lagrangian velocities because of the sweeping
e6ect, which is implicit in early work [18]. Recall that if X̃ (̃x0; t0 | t) is the position
of a #uid particle at time t which, at an earlier time t0 was at position x̃0, then [22]
the Lagrangian velocity UL(̃x0; t0 | t) ≡ @tX̃ (̃x0; t0 | t). It has also been suggested that
the quasi-Lagrangian velocities UQ(̃x0; t0 | x; t) ≡ ṽ(̃x + X̃ (̃x0; t0 | t); t), where ṽ denotes
the Eulerian velocity, are also not aKected by sweeping [11].



Wind-tunnel measurements [23] from 1971 showed that the shape of time-dependent,
second-order correlation functions for Eulerian and Lagrangian velocities are diKerent,
even when the eKect of the mean #ow has been accounted for. Subsequently, it was also
shown by K41-type arguments [24] that the characteristic decay time for Lagrangian
and Eulerian time-dependent correlation functions should be diKerent.
The qualitative reason for this diKerence is best illustrated by considering a typical

experiment in which a #uid, forced through a grid or an oriDce, displays homogeneous
and isotropic turbulence downstream. This turbulence is advected by the mean #ow.
Often a probe is used to obtain a time series of the #uid velocity at a single point in
space. If the mean #ow velocity is large compared to the turbulent velocity #uctuations,
Taylor’s hypothesis [6] can be used to convert the velocity diKerence �v(l=0; t =T)
to the velocity diKerence �v(l = ‘; t = 0) by relating length and time via the relation
‘=VmT, where Vm is the mean #ow velocity. This linear relation between length and
time scales immediately yields the dynamic-scaling exponent

zEp = 1 (10)

for all p if Eulerian velocities (indicated by the superscript E) are used in dynamic
structure functions. It is believed that the result (10) holds even if there is no mean
#ow, as is typically the case in DNS of homogeneous, isotropic #uid turbulence in a
cubical simulation domain with periodic boundary conditions. To see how this might
arise, consider the Navier–Stokes equation

@t ṽ+ (̃v · ∇̃)̃v= �∇2ṽ+ ∇̃p=,+f̃=, ; (11)

where ṽ; p; �, and , are, respectively, the Eulerian velocity, pressure, kinematic vis-
cosity, and density of the #uid, and f̃ is the external forcing; incompressibility, imposed
by the condition ∇̃ · ṽ = 0, is a good approximation for low-Mach-number turbulence
to which we restrict ourselves. A spatial Fourier transform of Eq. (11) yields

@tul(̃k; t) + ikmPlj (̃k)
∫
p̃+q̃=k̃

vj(p̃; t)vm(̃q; t) dp̃

=− �k2ul(̃k; t) +
f̃ l(̃k; t)

,
; (12)

where ũ(̃k; t) and ˜̃f(̃k; t) are, respectively, the spatial Fourier transform of ṽ(̃r; t) and
f̃(̃r; t); l; j; m denote Cartesian components, i =

√−1; k̃ is a wavevector with mag-
nitude k, and incompressibility is enforced by the projection operator Plj(k) = [�lj −
(klkj)=k2]. Note that the nonlinear term couples every Fourier mode directly with every
other such mode. Thus large eddies, comparable to the linear size L of the system,
advect small eddies, with sizes corresponding to inertial-range separations. As we men-
tioned above, the K41 estimate for the lifetime of an inertial-range eddy of linear size
l is �(l) = l=v(l) ∼ l2=3. This eddy is swept past a probe in a sweeping time �s = l=vL,
with vL the typical velocity of a box-size eddy. Since vl�vL, for L�l� �d; �s��(l)
so the small eddy is swept past the probe without signiDcant distortion. The linear
relation between �s and l yields Eq. (10), namely, zEp =1 for all p whenever Eulerian
velocities are used as is the case in most experiments and simulations. The equation of



motion for Lagrangian velocities [22], unlike the Navier–Stokes equation (11), contains
no advective nonlinear term. Thus Lagrangian velocities are unaKected by sweeping.
Therefore order-p dynamic structure functions of Lagrangian velocities might show
multiscaling. However, this has not been checked either in numerical simulations or
experiments. The DNS of Ref. [12] has shown for the Navier–Stokes equation that
zE2 = 1 and that z2 = 2=3, if Lagrangian velocities are used; but this work has not stud-
ied structure functions with p¿ 2. Ref. [11] has advocated the use of quasi-Lagrangian
velocities and suggested the following scaling relation:

zp = 1 + �p−1 − �p : (13)

This has been checked to some extent [14] for the GOY shell model, not by using dy-
namic structure functions but by using a modiDed exit-time method. Studies of dynamic
scaling have also been initiated for the stochastic Burgers equation [13].
Here we report brie#y our numerical studies of dynamic multiscaling in the GOY

shell model of #uid turbulence; a detailed discussion will be given elsewhere [25]. Our
study is diKerent from earlier work [14] in that it uses, for the Drst time, dynamic
structure functions to obtain dynamic multiscaling exponents. As we show below, this
requires very long simulations; ours are roughly a factor of 104 longer than those of
Ref. [14]. The GOY shell model [6,8,9] is deDned by the following equations:(

d
dt

+ �k2n

)
un = i(anun+1un+2 + bnun−1un+1 + cnun−1un−2)∗ + fn ; (14)

here the dynamical variables are the complex, scalar velocities un, for the shells n, with
one-dimensional, logarithmically spaced wavevectors kn, i.e., kn = k02n, and complex
conjugation is denoted by ∗. The coeOcients an= kn; bn=−�kn−1; cn=−(1−�)kn−2;
these are chosen to conserve the shell-model analogues of energy and helicity in the
inviscid, unforced limit; and we use the standard choice �= 1

2 . By virtue of the logarith-
mic spacing in k space one can obtain very high Reynolds number in this shell model
with only a moderate number of shells as we will see below. The velocity of shell n
is aKected directly only by the velocities of nearest- and next-nearest-neighbour shells.
The forcing term fn is generally conDned to a single shell with small kn. Eq. (14) can
be considered to be a highly simpliDed, one-dimensional form of the wavevector-space
Navier–Stokes equation (12). Since the shell model uses scalar velocities it cannot
account for vortices. Furthermore, unlike Eq. (12), the shell-model nonlinear terms al-
low for a direct coupling only between velocities whose shell indices diKer at most
by 2. In this sense there is no sweeping eKect in the shell model because veloci-
ties at the largest spatial scales cannot drive directly those at the smallest ones. It
has been suggested, therefore, that one should view such shell models as very sim-
ple, quasi-Lagrangian versions of the Navier–Stokes equation [14]. This view, though
appealing, cannot be substantiated by any approximate mapping of the Navier–Stokes
equation onto Eq. (14). However, the form of the shell-model nonlinearity and the
dissipation, which is signiDcant at small spatial scales, suOce to lead to a cascade, as
in #uid turbulence. And the static multiscaling exponents �p for the GOY shell model
deDned by

Sp(n) = 〈|un|p〉 ∼ k−�pn (15)



Table 1
Order-p (Column 1) static multiscaling exponents �p (Column 2) and dynamic multiscaling exponents zp
(Column 4) from our study of the GOY shell model (14). Column 3 contains the dynamic multiscaling
exponents zp obtained by using Eq. (13) and the static exponents �p in Column 2. The error estimates are
obtained as described in the text.

Order(p) �p zp (Eq. (13)) zp (our calculation)

1 0:3777± 0:0001 0:6221± 0:0001 0:60 ± 0:02
2 0:7091± 0:0001 0:6686± 0:0002 0:67 ± 0:02
3 1:0059± 0:0001 0:7030± 0:0002 0:701± 0:009
4 1:2762± 0:0002 0:7298± 0:0003 0:727± 0:007
5 1:5254± 0:0005 0:7511± 0:0007 0:759± 0:009
6 1:757 ± 0:001 0:768 ± 0:002 0:77 ± 0:01

are in close agreement with those found for three-dimensional #uid turbulence [9]; data
for the exponents �p from our calculations are given in Table 1.
We integrate the GOY-model Eq. (14) by using the numerical scheme of

Refs. [16,26,27], with a time step �t=2×10−4, viscosity �=10−7, and 22 shells, i.e.,
16 n6 22 and un=0 for n¡ 1 or n¿ 22; and we force the Drst shell by setting fn=0
for n¿ 2 and f1=(1+i)5×10−3. As in earlier studies we deDne the Taylor microscale
7, the integral scale Lint , the root-mean-square velocity urms, the Taylor-microscale
Reynolds number Re7, and the box-size eddy turnover time �L for the shell model
as follows: 7 ≡ (

∑
n |un|2=

∑
n k

2
n |un|2)1=2; Lint ≡ (

∑
n |un|2=k2n )=(

∑
n |un|2=kn); urms ≡

(2
∑

n |un|2)1=2; Re7 ≡ 7urms=�, and �L ≡ Lint=urms. For the parameters we use here we
Dnd Re7 � 2× 105 and �L � 106�t. Data from the Drst Ttr time steps are discarded so
that transients can die down and the system can achieve a nonequilibrium statistical
steady state; we use Ttr = 5× 104�L. We then average our data for dynamic structure
functions for Tav=105�L, which is larger by a factor of roughly 104 than the simulations
of Ref. [14].
By analogy with Eq. (8) we deDne the order-p complex dynamic structure function

for the GOY model (14) as

Cpn (t) ≡ 〈[un(t)u∗n(0)]p=2〉 ; (16)

this yields the order-p static structure function (15) at t = 0. It is convenient to work
with normalised structure function

Cp
n (t) =

Cpn (t)
Cpn (0)

: (17)

Our results show that the imaginary part of Cp
n (t) is negligibly small compared to its

real part. Therefore we work with the real part of Cp
n (t), namely, Fpn (t) ≡ R[Cp

n (t)].
Our results remain unchanged if we use the absolute value of C

p
n (t) instead. We use

the order-p generalisation of the integral time scale of [23] and deDne the order-p
integral time scale as

Tpn (:) =
∫ T:

0
Fpn (t) dt ; (18)



where T: is chosen such that Fpn (T:) = :, for all n, and 0¡:¡ 1. We have checked
that our results for the dynamic exponents zp do not depend signiDcantly on : for
0:36 :6 0:7. The wavevector-space version of the dynamic-multiscaling ansatz is

Tpn ∼ k−zpn ; (19)

for (kn)−1 in the inertial range. Hence, the slope of a log–log plot of Tpn versus kn
yields the dynamic multiscaling exponent zp. We carry out such slope calculations with
50 diKerent initial conditions and obtain 50 estimates for zp. The values given in Table
1 are the means of these 50 estimates; and the errors indicate the standard deviations.
The values that we obtain for zp (Column 3 Table 1) are consistent with those that
follow from the relation (13) (Column 2 Table 1) if we use the static multiscaling
exponents �p we have calculated (Column 1 Table 1). In Table 1 the errors in Column
1 are used to calculate those in Column 2.
In summary, then, we have obtained the dynamic multiscaling exponents for the

GOY shell model for #uid turbulence up to order p = 6 by using dynamic structure
functions. The clear evidence we Dnd for dynamic multiscaling conDrms the absence
of direct sweeping eKects in the GOY shell model. Our results agree well with the
relation (13). A detailed comparison of our work with the exit-time analysis of Ref.
[14] will be given elsewhere [25]. We are also carrying out a similar analysis of dy-
namic structure functions for the Navier–Stokes equation, with Eulerian, Lagrangian,
and quasi-Lagrangian velocities. We hope that our work will stimulate experimental
studies of such structure functions, now that high-Reynolds-number Lagrangian mea-
surements of #uid turbulence are increasing [28].
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